Recently reported in the Proceedings of the National Academy of Sciences (PNAS), the research is a significant step toward producing synthetic cells that behave like natural organisms and could perform important, microscale functions in fields ranging from the chemical industry to medicine.
The team presents in the PNAS paper computational models that provide a blueprint for developing artificial cells -- or microcapsules -- that can communicate, move independently, and transport "cargo" such as chemicals needed for reactions. Most importantly, the "biologically inspired" devices function entirely through simple physical and chemical processes, behaving like complex natural organisms but without the complicated internal biochemistry, said corresponding author Anna Balazs, Distinguished Professor of Chemical Engineering in Pitt's Swanson School of Engineering.
In one video of the interaction, as the signaling cell emits the agonist nanoparticles, the target cell responds with antagonists that stop the first cell from secreting. Once the signaling cell goes dormant, the target cell likewise stops releasing antagonists -- which makes the signaling cell start up again. The microcapsules get locked into a cycle that equates to an intercellular conversation, a dialogue humans could control by adjusting the capsules' permeability and the quantity of nanoparticles they contain.